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Introduction 

Escherichia coli, a gram-negative bacillus of the family Enterobacteriaceae, 

consists of a wide range of strains with huge diversity in their genomes, 

distributing in nature and the alimentary tracts of animals and humans (1-3). 
Some strains of E. coli cause intestinal or extra-intestinal diseases in animals 

and humans, such as urinary tract infections (UTIs), mild diarrhea, vomiting, 

hemorrhagic colitis, abdominal pain, neonatal meningitis, thrombotic 
thrombocytopenic purpura, and hemolytic uremic syndrome (3-6). Pathogenic 

strains are derived from commensal strains following the horizontal transfer of 

chromosomal and extra-chromosome genes and gene deletions (7).  
The structure of the E. coli genome, despite the high number of genes, has 

the appropriate potential for genetic diversity and, accordingly, pathogenicity (4). 

Pathogenic strains are differentiated from normal microbiota based on pathogenic 
factors and mechanisms (5). Today, the application of molecular genetic 

techniques has led to the discovery of a high percentage of microbial biodiversity 

and, subsequently, the assessment of the evolution of bacteria species in a 
proprietary habitat (8-10). Despite the occurrence of genetic recombination, these 

populations have a clonal structure. Many of these clones are shared by different 

hosts and are represented by molecular techniques and serotyping (4).  
Despite the redundancy of genetic phylogroups in E. coli, the species of this 

bacterium in human and animal populations mainly fall into 4 main phylogenetic 

groups (A, B1, B2, and D) (3,11-13). Examination of the E. coli genome has 
proven that the distribution of isolates in different phylogenetic groups is not 

random. The researchers, firstly by multilocus enzyme electrophoresis and then 

whole-genome multilocus sequence typing, identified that strains belonging to 
the various phylogroups are genetic entities (13,14), and strains are not randomly 

divided into different groups concerning their source of isolation (15).  

A comparison of the results of multilocus enzyme electrophoresis and 
sequence typing has shown that similar groupings are obtained; thus, 

electrophoresis is still a useful solution in classifying strains. The assignment of 

isolates to phylogroups with the development and validation of PCR evaluation 
to determine triplex genes has made these genes reliable markers in clinical 

observations (13,14). Currently, the phylogrouping by triplex PCR assay to detect 

the genes chuA and yjaA and a DNA fragment TspE4.C2, due to its simplicity 
and accuracy, being inexpensive and rapid method in obtaining valuable results, 

is extensively used in population genetics studies, host source relevancy and 

assortment of pathogenic commensal strains (4).  
Enterobacterial repetitive intergenic consensus (ERIC) sequences were first 

characterized in E. coli and other members of the family Enterobacteriaceae 

(16,17). These sequences are a conserved and imperfect palindrome of 127 bp 
that repeatedly are dispersed in the whole chromosome in the bacteria 

intergenome (9,18-20). Since the ERIC–polymerase chain reaction (PCR) 
technique relies on the amplification of stochastic dispensation intergenome parts 

and various organisms differ in the modulation of repeated sequences, this 

method produces different patterns of specific primers in electrophoresis, and on 
this basis, bacteria can be distinguished from one another (21,22). The 

achievement of the ERIC-PCR technique as a facilitated typing method for an 

extensive and advanced extending figure of organisms makes this method 
appropriate for hospital-based or localized epidemiology (23).  

The major purpose of the present study was to characterize the distribution 

of ERIC sequences among strains of E. coli isolated from human UTIs and 
domestic animals. In addition, the study aimed to compare the phylogenetic 

groups of E. coli isolates from animals with those isolated from humans and 

investigate the relationship between the ERIC pattern and phylogenetic groups. 

 

Methods 

Following our previous cross-sectional study on phylogroups of human isolates 

of E. coli, 100 E. coli strains were isolated from patients with UTI who had been 
referred to Sina Hospital in Hamadan, Iran, between January 2019 and January 

2020. These patients were of different age groups and were examined according 
to standard methods of bacteriology and biochemistry. Also, the fresh fecal 

samples of 20 domestic animals were collected from different areas located in 

Hamadan Province from January to March 2021. 
Phenotypic and genotypic confirmation of clinical E. coli isolates obtained 

from human specimens was done in our previous study (24). For the preliminary 

isolation of E. coli from animal fecal samples, the specimens were cultured on 
selective agar plates, including MacConkey and Eosin Methylene Blue agar 

media, and then the plates were incubated at 37 °C for 24 hours. The presence of 

metallic green colonies endorsed the growth of gram-negative coliform bacteria 
of E. coli. The grown colonies of E. coli were checked through Gram staining, 

IMViC test, catalase test, and urease production (25). The screened and purified 

strains of E. coli were inoculated in Nutrient Broth with the presence of 15% 
glycerol and then stored at -70 °C for further analysis. Genotypic confirmation 

of animal E. coli isolates was done similarly to clinical isolates. All the E. coli 

isolates were confirmed by PCR amplification of the 200 bp fragment of the 16S 

rRNA gene (Table 1). 

Materials used in this research were bacterial genomic DNA of positive E. 

coli isolates collected from human and domestic animals. Bacterial genomic 
DNA for PCR amplification was extracted as previously described (26).  

The animal E. coli strains were used for further phylogenetic characterization 

and statistical analysis. The phylogenetic group of each strain was determined 
according to Clermont and colleagues (13) by triplex PCR of chuA and yjaA 
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genes and the DNA fragment of TspE4.C2 (Table 1). The amplification products 

were electrophoresed onto 2% agarose gel containing ethidium bromide. Then, 

the gel was photographed under UV light, and the strains were assigned to the 
phylogenetic groups B2 (chuA+, yjaA+), D (chuA+, yjaA-), B1 (chuA-, 

TspE4.C2+), or A (chuA-, TspE4.C2-). 

For performing the DNA amplification process, an ERIC sequence pair of 
forward and reverse primers (Metabion Company) was applied based on a report 

by Versalovic and colleagues (9) (Table 1). ERIC-PCRs were performed in 12.5-

µL volumes containing 0.4 pmol/µL of each primer, 6.25 µL of the Taq DNA 
Polymerase Master Mix RED (amplicon; Denmark), 50 ng/µL of bacterial DNA 

(E. coli), and 4.75 µL distilled water. Finally, the thermocycler (BioRad T100) 

was programmed according to initial denaturing at 95 °C for 5 minutes, followed 
by 35 cycles of denaturation (95 °C for 1 minute), annealing (55 °C for 30 

seconds), and extension (72 °C for 1 minute). The last step was performed at 72 

°C for 5 minutes (19,27,28). 
 

 
The amplified PCR products were analyzed using 1.5% agarose gel and 

stained with the GelRed® nucleic acid stain. In this practice, a 100-bp DNA 
marker (PCRBIO Ladder IV) was used as a standard measuring means. After a 

45-minute gel run, the bands were visualized under UV light and photographed 

via a gel documentation system. 
ERIC-PCR fingerprints of amplified DNA fragments were obtained by 

evaluating the agarose gel electrophoresis images. The positions of the bands on 

each lane and each gel were recorded regarding the DNA ladder. The zero-one 
manual method was used to count the bands; in this regard, the presence of a 

given band was coded as 1, and the absence of a given band was coded as 0 in a 
data matrix. The data were analyzed using NTSYS-pc software version 2.10 K 

(Applied Biostatistics, Inc., NY, USA). The similarity between the strains was 

determined based on the Dice similarity. The dendrogram was constructed based 
on the averaged similarity of the matrix with the use of the algorithm of the 

unweighted pair-group method (UPGMA) in the SAHN program of the NTSYS-

pc software. The nearest neighbor-joining clustering method has been used to 
show relations between similar groups (28).  

 

Results 

The detection of 20 animal E. coli isolates via the phenotypic test was by the 
molecular detection assay using PCR amplification of the 200-bp fragment of the 

16S rRNA gene. 

Following our previous study, 20 E. coli strains isolated from the feces of 
domestic animals were analyzed here. These were allocated into one of the 4 

phylogenetic groups (ie, A, B1, B2, and D;). The frequency of phylogroups was 

as follows: A = 5%, B1 = 65%, B2 = 20%, and D = 10% (Figure 1). 
 

 

According to our previous research (24), the combination of 3 phylogenetic 

markers (chuA, yjaA, and DNA fragment TspE4.C2) classified 100 E. coli clinical 

strains isolated from human urine specimens into B2 (44%), D (31%), A (21%), 
B1 (9.20%), and B1 (4%) phylogroup types. The clinical E. coli isolates have 

been collected from outpatients and inpatients. The patients were between 2 and 

94 years old, with a mean age of 54.3 years. Previous research results indicated 
that most of the isolates belonged to B2 (n = 44, 44%) and D phylogroups (n = 

31, 31%;).  

ERIC-PCR band profiles (ERIC genotype) from E. coli strains isolated from 
human and animal fecal specimens were used to numerate bands of the gels for 

each sample according to their molecular weights (Figures 2 and 3). The number 

and diversity of bands obtained from gel electrophoresis in different samples 
were specified. The ERIC-PCR banding patterns in this study obtained 1 to 16 

bands encompassing 120 to about 3000 bp (Figures 2 and 3). 
 

 
The dominant fragments in ERIC-PCR banding patterns were characterized 

with sizes of 200 bp (61%) and 120 bp (56%) and with sizes of 1300 bp (70%) 
and 200 bp (45%) in E. coli strains isolated from human samples and animal fecal 

specimens, respectively. The least frequent band was 3000 bp, which was 

observed in 1 clinical and domestic animal strain. However, the distinguished 
bands included a broad limit from 120 to 3000 bp in all samples, and higher 

diversity was seen among E. coli strains isolated from human samples than in an 

animal fecal specimen.  
The NTSYS-pc analysis authorized the design of a phylogenetic tree for 

isolated strains through the attendance of a broad range of genetic heterogeneities 

among their populations. Two dendrograms were generated by cluster analysis. 
The ERIC-PCR typing of a heterogeneous population of E. coli isolates was 

genetically diverse at a 50% similarity cutoff value.  

After dendrogram analysis, it was shown that ERIC-PCR differentiated the 
clinical E. coli isolates into 19 clusters, E1-E19, with 50% similarity. The results 

of the ERIC pattern of clinical isolates are illustrated in Table 2. Cluster analysis 

of clinical strains showed that there were more than 3 major groups. The highest 

number of strains was in the E7 group (21 strains with more than 52% similarity), 

and the lowest number of strains was in the E13 and E16 (1 strain) groups (Table 

2). The dendrogram has grouped the 20 strains of E. coli strains isolated from 
animal fecal specimens into 7 distinct groups. Each cluster represented a 

particular number of strains, as well as divided inter and intra-group similarity 

relationships. Fifty percent of the strains with 0.53% similarity belonged to the 
E4 group, and the lowest number of strains was in the E3 and E5 (1 strain) groups.  

Table 1. The primers used in this study 

Reference 
Size of PCR 

product (bp) 
Primer Gene 

(36) 200 5-̒GCGGACGGGTGAGTAATGT-3̒ 16s rRNA-F 

  5-̒TCATCCTCTCAGACCAGCTA-3̒ 16s rRNA -R 

 0 279 5-̒GACGAACCAACGGTCAGGAT-3̒ ChuA-F 

  5-̒TGCCGCCAGTACCAAAGACA-3̒ ChuA-R 

(37) 211 5̒-TGAAGTGTCAGGAGACGCTG-3̒ YjaA-F 

  5̒-ATGGAGAATGCGTTCCTCAAC-3̒ YjaA-R 

(37) 152 5-̒GAGTAATGTCGGGGCATTCA-3̒ TspE4C2-F 

  5̒-CGCGCCAACAAAGTATTACG-3̒ TspE4C2-R 

(9) - 5̒- ATGTAAGCTCCTGGGGATTCAC-3̒ ERIC-F 

  5-̒TCATCCTCTCAGACCAGCTA-3̒ ERIC-R 

 

 

Figure 1. Triplex PCR profiles specific for animal E. coli isolate phylogenetic groups. 

Lane M: 100-bp DNA ladder; lane EL1-EL16: E. coli strains isolated from animal; EL1, 

4: D phylogroup (chuA+/yjaA-); EL2, 3, 7-9, 12-15: B1 phylogroup (ChuA+/ YjaA+ / 

TspE4C2+); EL5: A phylogroup (chuA-/ YjaA+/TspE4.C2-); EL10, 11, 16: B2 phylogroup 

(chuA+/yjaA+/TspE4C2+). 

 

 

Figure 2. The DNA fingerprinting of several E. coli strains isolated from human 

specimens by ERIC-PCR. M: 100-bp DNA ladder; lane E30-E44: E. coli strains; C: 

negative control (water as the DNA template). 

 

 

 

Figure 3. The DNA fingerprinting of several E. coli strains isolated from animal fecal 

specimens by ERIC-PCR. M: 100-bp DNA ladder; lane EL1-EL15: E. coli strains; C: 

negative control (water as the DNA template). 
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Discussion 

Escherichia coli is one of the most important opportunistic pathogens causing 
intestinal and urinary tract infections in animals and humans (29). This study 

showed that the distribution of phylogenetic groups and genetic markers among 

the host was not random. In a report by Zoolkiflia and colleagues, the relationship 
between the analyzed host and the phylogenetic group was discussed. The results 

of such research lead to an understanding of the communication between the 

phylogroup and the type of the host and disease (14).  
In our studies, the triplex PCR method clustered all E. coli strains into 4 (A, 

B1, B2, and D) phylogenetic groups. A high percentage (44%) of clinical strains 

belonged to the B2 group, and more (65%) of the domestic animal strains were 
in the B1 group. 

Gordon and colleagues (2008) evaluated that this method had the efficiency 
of separating 90% of E. coli strains into 4 main groups (30).   

Our results demonstrated that B1 was the main phylogroup of E. coli isolated 

from domestic animals, followed by phylogroup B2. Coura and colleagues 
(2015) also proved that B1 was the most important phylogroup in animals, 

followed by phylogroup A (5). In another study, Gordon and Cowling reported 

the prevalence of strains of phylogroup B2 among herbivorous (31).  
Some independent studies have examined the distribution of E. coli strains 

isolated from human and animal specimens between phylogroups. The results of 

these studies have determined the relationship between phylogenetic groups and 
host species. These authors concluded that domestication was the most important 

factor affecting the genetic structure of E. coli populations (7,32,33).  

The genome size of the strains belonging to different phylogroups is 
different. Phylogenetic groups B2 and D have a larger genome than groups A and 

B1 and have more pathogenic factors (34). Intestinal pathogenic strains belong 

to the phylogroups B1 and D (31), while extraintestinal pathogenic strains belong 
to phylogroups B2 and D (4,15). The commensal human strains are in the A and 

B1 phylogenetic groups (13), while animal strains are in the B1 group (35). 

Based on the comparison of ERIC-PCR results with phylogroups, the 
extraintestinal pathogenic strains within the major cluster (E7) with more than 

50% similarity belonged to the B2 and D phylogroups (Table 2). The incidence 

of these human pathogenic isolates in a major cluster is genetically related to their 
source of prevalence and pathogenicity in the target population. Several 

dissimilar isolates belonging to all 4 phylogroups (A, B1, B2, D) were distributed 

throughout the dendrogram within E5, E10, and E12-E19 clusters (Table 2), 
indicating feasible horizontal gene transfer. 

The results of the current research presented the genetic diversity of clinical 

isolates of E. coli correctly to detect the wide heterogeneity among E. coli isolates 
in humans and animals. 

 

Conclusion 

The maximum number (50%) of E. coli strains isolated from animal specimens 
belonged to the E4 cluster. The comparison of the results obtained from the 

phylogenetic analysis with the dendrogram represented that most of the isolates 

(70%) that fell in the E4 cluster belonged to the B1 group, followed by the B2 
group. Also, the achievement of the ERIC-PCR technique as a facilitated typing 

method for an extensive and advanced extending figure of organisms makes this 

method appropriate for hospital-based or localized epidemiology. 
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